

eneral Information
PowerReplace interprets filter file line by line. A line must be as follow:
        %comments-line
        #define-line
        first-stuff    second-stuff

Comments-line has no effect. Define-line is used to set some option. The
stuff-line means that the first-stuff will be replaced by the second-stuff
everywhere in the text file. For the first-stuff, you can use the format:
        "first-string"         
        $hex-string$
        'pattern'       

And for the second-stuff, you can use:
        "second-string"
        $hex-string$       

In other words, a stuff-line must have one of the following format:
        "first-string"     
"second-string"   
        $hex-string$            "second-string"
        'pattern'                  "second-string"
        "first-string"     
$hex-string$   
        $hex-string$            $hex-string$
        'pattern'                  $hex-string$

In the following, first, we will give some examples. Then we will give a short
description for each stuff. You can find at the end of this Chapter some bad
examples with which you can understand better its use.

Note that a good way to learn is to study the sample filter files in the
“Filter” folder.

Good Examples:
      "é"      "é"                        % OK. for HTML
      "é"                    "é"          % OK. for HTML
      "à"                    "A"                        % OK. lower to upper
      "è"                    "e"                        % OK. 8 bit to 7 bit
      "è"                    "\\`e"                  % OK. for TeX. \\ means the character \
      "//*\r"            " "                        % OK. delete C++ comments

First-String:
- In the simple case, a first-string is a normal string without asterisk-sign(*).
You must use meta character for give special characters in the string like
CR, NULL.

Example: "abc" and "ab\"ce" are simple-strings. (\" means the character ", see
below.)

- In the more general case, a first-string may contain one asterisk-sign(*) in
the middle of this string for any indeterminate substring.
For example, "abc*xyz" means all normal string beginning with "abc" and
ending with "xyz". (See Chapter 7: Technical Note    for a complicate
example)

An other example: "//*\r" means all characters after "//" of a line(C++
comments).
But neither "*ab" nor "a*b*c" is a first-string.

Second-String:
- In the simple case, a second-string is a normal string without asterisk-
sign(*).
- In the more general case, a second-string may contain one tag \>. We’ll
discuss it later in the section “Insertion tag in the second-string.”

Character set:
We can tell PowerReplace the special characters by using meta character
as:
        \\        representing        \                             

        \"        representing        "                             

        *        representing        *                             

        \t        representing        TAB                             
        \n        representing        LF                           

        \r        representing        CR

PowerReplace supports all characters set in filter, the control characters (0-
31) in particular.    We can specify characters in filter by using ASCII
numbers in decimal, hexadecimal or octal base. For example, All of "\d065" "\
x41" "\o101" (or "\101") means the same character "A".    Examples:
        "\d65B"    "B\101\x43" % OK. change "AB" to "BAC"
        "\0"          ""                    % OK. strip NULL

Define(#):
◊ The default meta character used by PowerReplace is "\". You can change it.
For example, to set "/" as meta character, just insert the following define-line

in your filter file:
        #meta              "/"

If you don't use any meta character, insert the following define-line:
        #meta              ""

For example, to replace è by \\`e, we can use the following line:
       "è"                    "\\`e"                % OK. for TeX. \\ means the character \
or the following two lines:
        #meta              "/"
        "è"                    "\`e"                  % OK. for TeX. now \ isn’t meta character!

I use the default meta character "\" in my documentation.
◊ The modification of the meta "\" is not valid for the regular expression. It is
only valid    for the first-string and second-string (with ").
◊ See Chapter 7 - Technical Note for an other define #type.

Hexadecimal string:
The hex-string must be enclosed by dollar-sign($hex-string$). You can use
one of the following lines to convert "AB" to "BAC":
      "AB"            "BAC"                  % OK. change "AB" to "BAC"
      6566        666567            % OK. change "AB" to "BAC"
      6566        "BAC"                  % OK. change "AB" to "BAC"
      "AB"            666567            % OK. change "AB" to "BAC"

Regular expression (pattern):
This version supports regular expression (pattern) for searching string. The
pattern must be enclosed by single quotation marks ('pattern'). We can only
use pattern for first-stuff but not for the second-stuff. Here is a small
description of pattern supported by PowerReplace:

An ordinary character (not mentioned below) matches that character.

^        matches beginning of line
$        matches end of line, including '\r' at the end of line.
\x        quotes character after it x, except
        \t        quotes        TAB                             
        \n        quotes        LF                           

        \r        quotes        CR

.       mathches any character
*        a single character followed by * matches
          zero or more occurrences of the character.
          In particular, ".*" matches an arbitrary possibly empty string.
+        a single character followed by + matches
          one or more occurrences of the character.

[]    a set of characters in the set matches any single character in the set.
          [c1-c2] matches any character of ascii ranging from character c1 to
character c2.
          [^set] matches any character not in set.
See also any Unix book for more information about pattern. Example:
      '^ +'         
""              % OK. strip spaces at beginning of line.
      '^[\t]+'
""              % OK. strip spaces and tab at beginning of line.
      '^\r'
          "--\r"   
% OK. replace blanc line by --.
      '^\r'
          "--\r"   
% OK. replace blanc line by --.
      '^\r'
          ""   

% OK. remove blanc line
      '\r+'
          "\r"   
    % OK. remove blanc line

Insertion tag in the second-string:
In the second-string, you can use a new tag \> for inserting a substring of
the first-string-found (it is a variable string depending the input text, called
also “source”). We use two parameters (x,y) to define this substring: It takes
x letters at the beginning and y letters at the end of the source. By default,
if (x,y) are missing, this substring is just the source.

Example1: My text is "hello". If the first-string is "e*o", then the source will be
"ello". We study the following filter lines:
    (1) "e*o"      "\> and goodbye"
    (2) "e*o"      "\> and goodbye" (all, 0)
    (3) "e*o"      "\> and goodbye" (0, all)
    (4) "e*o"      "\> and goodbye" (all, all)
    (5) "e*o"      "\> and goodbye" (0, 0)
    (6) "e*o"      "\> and goodbye" (1, 0)
    (7) "e*o"      "\> and goodbye" (0, 2)
    (8) "e*o"      "\> and goodbye" (1, 1)
then, the output file will contain the following text for each case:
    (1,2,3)    "hello and goodbye"
    (4) "helloello and goodbye"
    (5) "h and goodbye"
    (6) "he and goodbye"
    (7) "hlo and goodbye"
    (8) "heo and goodbye"

Example2: We want to change "à" to "a'" if and only if it is the last letter of a

word. The solution whitout the insertion tag is writing the following lines:
    "à,"          "a',"
    "à;"          "a';"
    "à:"          "a':"
    "à."          "a'."
    "à!"          "a'!"
    "à?"          "a'?"
    "à "          "a' "
With the insert tag, you need only the following line:
    'à[,;:\.!?]'          "a'\>"        (0,1)
Or this line:
    'à[^a-zA-Z]'            "a'\>"        (0,1)

◊ You can put more than one insertion tag in the second string. For example,
    "abc*xyz          "1:\> … 2:\> … 3:\>"        (0,1) (3,0)
The first insertion tag takes one character at the end of the source: (0,1), the
second takes three character at the beginning of the source: (3,0), and the
third takes all characters of the source.

Insertion at the begin of file    and the end of file
 You can now add string to the begin and the end of the text files. Syntax:
    "*BOF*"            "The begin of my file.\r"
    "*EOF*"         
"\rThe end of my file."

Bad Examples:
      '^ +'              'abc'        % BAD. pattern at the second position
      $A9876$          ""              % BAD. bad hex-string, length odd
      "a*b*c"          "\xB3"      % BAD. two * in the first-string, try "a*b*c" "\xB3"
      '[aeiou'        " "            % BAD. pattern syntax error
      "a"a"              "AA"          % BAD. syntax error. try "a\"a" "AA"
      "\da"              "a"            % BAD. decimal number error
      $23"                "98"          % BAD. syntax error. try    23 "98"
      $A567BDG$      "98"          % BAD. bad hex-string
      "toto"            "t*t"        % BAD. bad second-string, try "toto" "t*t"

